△两图中左半边为最终输出效果,右半边为渲染输出
而没有使用双重鉴别的方法,在嘴角这种细节上就会出现一些扭曲。
△左图未使用双重鉴别;右图为EG3D方法效果
数据上,与此前方法对比,EG3D方法在256分辨率、512分辨率下的距离得分(FID)、识别一致性(ID)、深度准确性和姿态准确性上,表现都更好。
此项研究由英伟达和斯坦福大学共同完成。
共同一作共有4位,分别是:Eric R. Chan、Connor Z. Lin、Matthew A. Chan、Koki Nagano。
其中,Eric R. Chan是斯坦福大学的一位博士研究生,此前曾参与过一些2D图像变3D的方法,比如pi-GAN。
Connor Z. Lin是斯坦福大学的一位正在读博二的研究生,本科和硕士均就读于卡内基梅隆大学,研究方向为计算机图形学、深度学习等。