当前位置:首页 > 实用技巧 >

dw网页设计怎么替换背景图(dw制作网页教程插入背景图片)

来源:原点资讯(www.yd166.com)时间:2024-02-21 13:05:57作者:YD166手机阅读>>

前言

发现BackgroundMattingV2项目的一些使用上的小缺陷,但是他却可以做到头发丝精细的抠图效果。所以我将项目稍微魔改了一下,让他在可以选择单一图片的基础上,可以把抠好的图片贴在自定义的背景图上,这样就可以让照片中的人物,出现在任何背景上。是不是很有意思?

本文的代码地址→

项目说明项目结构

我们先看一下项目的结构,如图:

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(1)

其中,model文件夹放的是模型文件,模型文件的下载地址为:模型下载地址

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(2)

下载该模型放到model文件夹下。

依赖文件-requirements.txt,说明一下,pytorch的安装需要使用官网给出的,避免显卡驱动对应不上。

依赖文件如下:

kornia==0.4.1 tensorboard==2.3.0 torch==1.7.0 torchvision==0.8.1 tqdm==4.51.0 opencv-python==4.4.0.44 onnxruntime==1.6.0数据准备

我们需要准备一张照片以及照片的背景图,和你需要替换的图片。我这边选择的是BackgroundMattingV2给出的一些参考图,原始图与背景图如下:

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(3)

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(4)

新的背景图(我随便找的)如下:

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(5)

替换背景图代码

不废话了,上核心代码。(PS:完整代码比较长,限于篇幅,仅分享一部分出来,完整文初有!!)

#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/11/14 21:24 # @Site : # @File : inferance_hy.py import argparse import torch import os from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision import transforms as T from torchvision.transforms.functional import to_pil_image from threading import Thread from tqdm import tqdm from torch.utils.data import Dataset from PIL import Image from typing import Callable, Optional, List, Tuple import glob from torch import nn from torchvision.models.resnet import ResNet, Bottleneck from torch import Tensor import torchvision import numpy as np import cv2 import uuid # --------------- hy --------------- class HomographicAlignment: """ Apply homographic alignment on background to match with the source image. """ def __init__(self): self.detector = cv2.ORB_create() self.matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE) def __call__(self, src, bgr): src = np.asarray(src) bgr = np.asarray(bgr) keypoints_src, descriptors_src = self.detector.detectAndCompute(src, None) keypoints_bgr, descriptors_bgr = self.detector.detectAndCompute(bgr, None) matches = self.matcher.match(descriptors_bgr, descriptors_src, None) matches.sort(key=lambda x: x.distance, reverse=False) num_good_matches = int(len(matches) * 0.15) matches = matches[:num_good_matches] points_src = np.zeros((len(matches), 2), dtype=np.Float32) points_bgr = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points_src[i, :] = keypoints_src[match.trainIdx].pt points_bgr[i, :] = keypoints_bgr[match.queryIdx].pt H, _ = cv2.findHomography(points_bgr, points_src, cv2.RANSAC) h, w = src.shape[:2] bgr = cv2.warpPerspective(bgr, H, (w, h)) msk = cv2.warpPerspective(np.ones((h, w)), H, (w, h)) # For areas that is outside of the background, # We just copy pixels from the source. bgr[msk != 1] = src[msk != 1] src = Image.fromarray(src) bgr = Image.fromarray(bgr) return src, bgr class Refiner(nn.Module): # For TorchScript export optimization. __constants__ = ['kernel_size', 'patch_crop_method', 'patch_replace_method'] def __init__(self, mode: str, sample_pixels: int, threshold: float, kernel_size: int = 3, prevent_oversampling: bool = True, patch_crop_method: str = 'unfold', patch_replace_method: str = 'scatter_nd'): super().__init__() assert mode in ['full', 'sampling', 'thresholding'] assert kernel_size in [1, 3] assert patch_crop_method in ['unfold', 'roi_align', 'gather'] assert patch_replace_method in ['scatter_nd', 'scatter_element'] self.mode = mode self.sample_pixels = sample_pixels self.threshold = threshold self.kernel_size = kernel_size self.prevent_oversampling = prevent_oversampling self.patch_crop_method = patch_crop_method self.patch_replace_method = patch_replace_method channels = [32, 24, 16, 12, 4] self.conv1 = nn.Conv2d(channels[0] 6 4, channels[1], kernel_size, bias=False) self.bn1 = nn.BatchNorm2d(channels[1]) self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size, bias=False) self.bn2 = nn.BatchNorm2d(channels[2]) self.conv3 = nn.Conv2d(channels[2] 6, channels[3], kernel_size, bias=False) self.bn3 = nn.BatchNorm2d(channels[3]) self.conv4 = nn.Conv2d(channels[3], channels[4], kernel_size, bias=True) self.relu = nn.ReLU(True) def forward(self, src: torch.Tensor, bgr: torch.Tensor, pha: torch.Tensor, fgr: torch.Tensor, err: torch.Tensor, hid: torch.Tensor): H_full, W_full = src.shape[2:] H_half, W_half = H_full // 2, W_full // 2 H_quat, W_quat = H_full // 4, W_full // 4 src_bgr = torch.cat([src, bgr], dim=1) if self.mode != 'full': err = F.interpolate(err, (H_quat, W_quat), mode='bilinear', align_corners=False) ref = self.select_refinement_regions(err) idx = torch.nonzero(ref.squeeze(1)) idx = idx[:, 0], idx[:, 1], idx[:, 2] if idx[0].size(0) > 0: x = torch.cat([hid, pha, fgr], dim=1) x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False) x = self.crop_patch(x, idx, 2, 3 if self.kernel_size == 3 else 0) y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False) y = self.crop_patch(y, idx, 2, 3 if self.kernel_size == 3 else 0) x = self.conv1(torch.cat([x, y], dim=1)) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = F.interpolate(x, 8 if self.kernel_size == 3 else 4, mode='nearest') y = self.crop_patch(src_bgr, idx, 4, 2 if self.kernel_size == 3 else 0) x = self.conv3(torch.cat([x, y], dim=1)) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) out = torch.cat([pha, fgr], dim=1) out = F.interpolate(out, (H_full, W_full), mode='bilinear', align_corners=False) out = self.replace_patch(out, x, idx) pha = out[:, :1] fgr = out[:, 1:] else: pha = F.interpolate(pha, (H_full, W_full), mode='bilinear', align_corners=False) fgr = F.interpolate(fgr, (H_full, W_full), mode='bilinear', align_corners=False) else: x = torch.cat([hid, pha, fgr], dim=1) x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False) y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False) if self.kernel_size == 3: x = F.pad(x, (3, 3, 3, 3)) y = F.pad(y, (3, 3, 3, 3)) x = self.conv1(torch.cat([x, y], dim=1)) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) if self.kernel_size == 3: x = F.interpolate(x, (H_full 4, W_full 4)) y = F.pad(src_bgr, (2, 2, 2, 2)) else: x = F.interpolate(x, (H_full, W_full), mode='nearest') y = src_bgr x = self.conv3(torch.cat([x, y], dim=1)) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) pha = x[:, :1] fgr = x[:, 1:] ref = torch.ones((src.size(0), 1, H_quat, W_quat), device=src.device, dtype=src.dtype) return pha, fgr, ref def select_refinement_regions(self, err: torch.Tensor): """ Select refinement regions. Input: err: error map (B, 1, H, W) Output: ref: refinement regions (B, 1, H, W). FloatTensor. 1 is selected, 0 is not. """ if self.mode == 'sampling': # Sampling mode. b, _, h, w = err.shape err = err.view(b, -1) idx = err.topk(self.sample_pixels // 16, dim=1, sorted=False).indices ref = torch.zeros_like(err) ref.scatter_(1, idx, 1.) if self.prevent_oversampling: ref.mul_(err.gt(0).float()) ref = ref.view(b, 1, h, w) else: # Thresholding mode. ref = err.gt(self.threshold).float() return ref def crop_patch(self, x: torch.Tensor, idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], size: int, padding: int): """ Crops selected patches from image given indices. Inputs: x: image (B, C, H, W). idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index. size: center size of the patch, also stride of the crop. padding: expansion size of the patch. Output: patch: (P, C, h, w), where h = w = size 2 * padding. """ if padding != 0: x = F.pad(x, (padding,) * 4) if self.patch_crop_method == 'unfold': # Use unfold. Best performance for PyTorch and TorchScript. return x.permute(0, 2, 3, 1) \ .unfold(1, size 2 * padding, size) \ .unfold(2, size 2 * padding, size)[idx[0], idx[1], idx[2]] elif self.patch_crop_method == 'roi_align': # Use roi_align. Best compatibility for ONNX. idx = idx[0].type_as(x), idx[1].type_as(x), idx[2].type_as(x) b = idx[0] x1 = idx[2] * size - 0.5 y1 = idx[1] * size - 0.5 x2 = idx[2] * size size 2 * padding - 0.5 y2 = idx[1] * size size 2 * padding - 0.5 boxes = torch.stack([b, x1, y1, x2, y2], dim=1) return torchvision.ops.roi_align(x, boxes, size 2 * padding, sampling_ratio=1) else: # Use gather. Crops out patches pixel by pixel. idx_pix = self.compute_pixel_indices(x, idx, size, padding) pat = torch.gather(x.view(-1), 0, idx_pix.view(-1)) pat = pat.view(-1, x.size(1), size 2 * padding, size 2 * padding) return pat def replace_patch(self, x: torch.Tensor, y: torch.Tensor, idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]): """ Replaces patches back into image given index. Inputs: x: image (B, C, H, W) y: patches (P, C, h, w) idx: selection indices Tuple[(P,), (P,), (P,)] where the 3 values are (B, H, W) index. Output: image: (B, C, H, W), where patches at idx locations are replaced with y. """ xB, xC, xH, xW = x.shape yB, yC, yH, yW = y.shape if self.patch_replace_method == 'scatter_nd': # Use scatter_nd. Best performance for PyTorch and TorchScript. Replacing patch by patch. x = x.view(xB, xC, xH // yH, yH, xW // yW, yW).permute(0, 2, 4, 1, 3, 5) x[idx[0], idx[1], idx[2]] = y x = x.permute(0, 3, 1, 4, 2, 5).view(xB, xC, xH, xW) return x else: # Use scatter_element. Best compatibility for ONNX. Replacing pixel by pixel. idx_pix = self.compute_pixel_indices(x, idx, size=4, padding=0) return x.view(-1).scatter_(0, idx_pix.view(-1), y.view(-1)).view(x.shape) def compute_pixel_indices(self, x: torch.Tensor, idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], size: int, padding: int): """ Compute selected pixel indices in the tensor. Used for crop_method == 'gather' and replace_method == 'scatter_element', which crop and replace pixel by pixel. Input: x: image: (B, C, H, W) idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index. size: center size of the patch, also stride of the crop. padding: expansion size of the patch. Output: idx: (P, C, O, O) long tensor where O is the output size: size 2 * padding, P is number of patches. the element are indices pointing to the input x.view(-1). """ B, C, H, W = x.shape S, P = size, padding O = S 2 * P b, y, x = idx n = b.size(0) c = torch.arange(C) o = torch.arange(O) idx_pat = (c * H * W).view(C, 1, 1).expand([C, O, O]) (o * W).view(1, O, 1).expand([C, O, O]) o.view(1, 1, O).expand( [C, O, O]) idx_loc = b * W * H y * W * S x * S idx_pix = idx_loc.view(-1, 1, 1, 1).expand([n, C, O, O]) idx_pat.view(1, C, O, O).expand([n, C, O, O]) return idx_pix def load_matched_state_dict(model, state_dict, print_stats=True): """ Only loads weights that matched in key and shape. Ignore other weights. """ num_matched, num_total = 0, 0 curr_state_dict = model.state_dict() for key in curr_state_dict.keys(): num_total = 1 if key in state_dict and curr_state_dict[key].shape == state_dict[key].shape: curr_state_dict[key] = state_dict[key] num_matched = 1 model.load_state_dict(curr_state_dict) if print_stats: print(f'Loaded state_dict: {num_matched}/{num_total} matched') def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v = divisor return new_v class ConvNormActivation(torch.nn.Sequential): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: Optional[int] = None, groups: int = 1, norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d, activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU, dilation: int = 1, inplace: bool = True, ) -> None: if padding is None: padding = (kernel_size - 1) // 2 * dilation layers = [torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=norm_layer is None)] if norm_layer is not None: layers.append(norm_layer(out_channels)) if activation_layer is not None: layers.append(activation_layer(inplace=inplace)) super().__init__(*layers) self.out_channels = out_channels class InvertedResidual(nn.Module): def __init__( self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] if norm_layer is None: norm_layer = nn.BatchNorm2d hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers: List[nn.Module] = [] if expand_ratio != 1: # pw layers.append(ConvNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)) layers.extend([ # dw ConvNormActivation(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer, activation_layer=nn.ReLU6), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), norm_layer(oup), ]) self.conv = nn.Sequential(*layers) self.out_channels = oup self._is_cn = stride > 1 def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return x self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__( self, num_classes: int = 1000, width_mult: float = 1.0, inverted_residual_setting: Optional[List[List[int]]] = None, round_nearest: int = 8, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet norm_layer: Module specifying the normalization layer to use """ super(MobileNetV2, self).__init__() if block is None: block = InvertedResidual if norm_layer is None: norm_layer = nn.BatchNorm2d input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features: List[nn.Module] = [ConvNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer)) input_channel = output_channel # building last several layers features.append(ConvNormActivation(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass x = self.features(x) # Cannot use "squeeze" as batch-size can be 1 x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) class MobileNetV2Encoder(MobileNetV2): """ MobileNetV2Encoder inherits from torchvision's official MobileNetV2. It is modified to use dilation on the last block to maintain output stride 16, and deleted the classifier block that was originally used for classification. The forward method additionally returns the feature maps at all resolutions for decoder's use. """

代码说明

1、handle方法的参数一次为:原始图路径、原始背景图路径、新背景图路径。

1、我将原项目中inferance_images使用的类都移到一个文件中,精简一下项目结构。

2、ImagesDateSet我重新构造了一个新的NewImagesDateSet,,主要是因为我只打算处理一张图片。

3、最终图片都存在相同目录下,避免重复使用uuid作为文件名。

4、本文给出的代码没有对文件格式做严格校正,不是很关键,如果需要补充就行。

验证一下效果

dw网页设计怎么替换背景图,dw制作网页教程插入背景图片(6)

怎么样?还是很炫吧!

总结

研究这个开源项目以及编写替换背景的功能,花了我两天的时间,需要对项目本身的很多设置需要了解。以后有机会,我会把yolov5开源项目也魔改一下,基于作者给出的效果实现作出自己想要的东西,会非常有意思。本文的项目功能只是临时做的,不是很健壮,想用的话自己再发挥发挥自己的想象力吧。

分享:

天上剑仙三百万,见我也须尽低眉。——《雪中悍刀行》

,

栏目热文

dw插入图片怎么加载不出来(dw插入的图片不显示怎么办)

dw插入图片怎么加载不出来(dw插入的图片不显示怎么办)

如何使用DW工具给图片添加热点 1、准备一张图片。 准备一张需要将不同热点添加到不同区域的图像。 2、插入图片:打开Dr...

2024-02-21 13:35:58查看全文 >>

在dw上制作的网页上如何浏览图片(dw网页设计怎么插图片)

在dw上制作的网页上如何浏览图片(dw网页设计怎么插图片)

一、安装dreamweaver一、建立站点文件夹 在电脑硬盘上e:新建一个文件夹作为网站的根目录,里面包含四个文件夹 ,...

2024-02-21 12:59:57查看全文 >>

dw网页制作怎么将图片作为背景(dw网页制作教程怎么导入图片)

dw网页制作怎么将图片作为背景(dw网页制作教程怎么导入图片)

1、建立站点后,在文件夹上右键新建一个文件,改名为音乐制作网页,然后双击进入网页,首先,插入表格,17行,2列,表格宽度...

2024-02-21 13:34:57查看全文 >>

我的世界水里面游的生物怎么驯服(我的世界水生生物怎么装桶里)

我的世界水里面游的生物怎么驯服(我的世界水生生物怎么装桶里)

​在《我的世界》里有很多中方式可以驯养生物,而将这些生物驯养之后会给我们极大的帮助,它们有些可以提供食物,有些可以协助打...

2024-02-21 13:19:19查看全文 >>

我的世界哪些食物能吃(我的世界所有食物作用)

我的世界哪些食物能吃(我的世界所有食物作用)

在《我的世界》里,吃吃吃也是生存的必要条件,食物除了可以回复鸡腿饥饿值还可以回复饱和度,冒险家们出门可别忘了带食物哦。除...

2024-02-21 13:16:50查看全文 >>

dw如何导入网页图片(dw上如何将图片插入网站)

dw如何导入网页图片(dw上如何将图片插入网站)

教程写作缘由:过年期间往往是聚会的好时机。不管是什么类型的聚会,都会拍集体照留念或拿往时的集体照来回忆。集体照上的名字如...

2024-02-21 13:12:39查看全文 >>

三国志战略版曹彰黑科技阵容搭配(三国志战略版曹彰最佳用法)

三国志战略版曹彰黑科技阵容搭配(三国志战略版曹彰最佳用法)

大家好我是零氪玩家花席,本期介绍一个奇特的武将【曹彰】,他的战法可以对敌人造成控制,同时触发后不会冲突,还有可能造成伤害...

2024-02-21 13:19:33查看全文 >>

三国志战略版曹彰适合什么战法(三国志战略版曹彰值不值得练)

三国志战略版曹彰适合什么战法(三国志战略版曹彰值不值得练)

我是百科阅览,内容不垂直不专注,跨领域跨类目,不迎合不孤独。所有内容都是原创,敬请阅读,你若抄袭,将维权到底!聊聊三国志...

2024-02-21 13:21:33查看全文 >>

三国志战略版最佳配将(三国志战略版最简单配将)

三国志战略版最佳配将(三国志战略版最简单配将)

l前言分享孝公最近在研究的两个配将思路:1、赵云砍王(肉刀)计划2、魏法T0模版套用最近现实是真的很多事,不更是攻...

2024-02-21 13:30:20查看全文 >>

三国志战略版曹彰最佳用法(三国志战略版曹彰搭配)

三国志战略版曹彰最佳用法(三国志战略版曹彰搭配)

入坑三战,五湖四海皆兄弟,哈喽大家好我是小天。福利:S1玩家可以领礼包SGZCZZ (100金铢、战法点88、铜币18...

2024-02-21 13:26:56查看全文 >>

文档排行