
y=x平方×lnxcosx的导数等于2xlnxcosx+xcosx-x^2lnxsinx,因为这是一个含有三个函数的乘积的导数问题,按乘积的求导法则知
(uvw)'=u'vw+uv'w+uvw'
所以,函数y=x^2lnxcosx的导数等于
y'=(x^2lnxcosx)'
=(x^2)'*lnxcosx+x^2*(lnx)'cosx+x^2lnx(cosx)'
=2x*lnxcosx+x^2*1/x*cosx+x^2lnx(-sinx)
=2x*lnxcosx+xcosx-x^2lnxsinx
所以,y=x平方×lnxcosx的导数等于2xlnxcosx+xcosx-x^2lnxsinx
