初中三年,数学知识点繁多,老师根据多年的初中数学教学经验分章节进行整理了初中数学歌诀。欢迎广大数学爱好者进一步实践提出修改建议,把好的东西在留言区分享给大家。

CZSXRJB0701011正数和负数
CZSXRJB0701012有理数
CZSXRJB0701013有理数的加减法
有理数的加法运算
同号相加一边倒;
异号相加“大”减“小”,
符号跟着大的跑;
绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
CZSXRJB0701014有理数的乘除法
CZSXRJB0701015有理数的乘方
CZSXRJB0701021整式
“代入”口决
挖去字母换上数(式),
数字、字母都保留;
换上分数或负数,
给它带上小括弧,
原括弧内出(现)括弧,
逐级向下变括弧(小—中—大)。
CZSXRJB0701022整式的加减
合并同类项,法则不能忘,
只求系数和,字母、指数不变样。
去、添括号法则
去括号、添括号,关键看符号,括
号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号。
CZSXRJB0701031从算式到方程
CZSXRJB0701032解一元一次方程(一)——移项与合并
CZSXRJB0701033解一元一次方程(二)——去括号与去分母
已知未知要分离,分离方法就是移,
加减移项要变号,乘除移了要颠倒。
CZSXRJB0701034实际问题与一元一次方程
CZSXRJB0701041几何图形
CZSXRJB0701042直线、射线、线段
直线射线与线段,形状相似有关联;直线长短不确定,可向两方无限延;
射线仅有一端点,反向延长成直线;线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
CZSXRJB0701043角
一点出发两射线,组成图形叫做角;共线反向是平角,平角之半叫直角;
平角两倍成周角,小于直角叫锐角;直平之间是钝角,平周之间叫优角;
和为直角叫互余,和为平角叫互补。
CZSXRJB0701044课题学习 制作长方体形状的包装盒
CZSXRJB0702051相交线
CZSXRJB0702052平行线及其判定
CZSXRJB0702053平行线的性质
CZSXRJB0702054平移
CZSXRJB0702061平方根
CZSXRJB0702062立方根
CZSXRJB0702063实数
CZSXRJB0702071平面直角坐标系
特殊点坐标特征
坐标平面点(x,y),
横在前来纵在后;
( , ),(-, ),(-,-)和( ,-),
四个象限分前后;
X轴上y为0,x为0在Y轴。
象限角的平分线
象限角的平分线,坐标特征有特点,
一、三横纵都相等,二、四横纵却相反。
平行某轴的直线
平行某轴的直线,点的坐标有讲究,
直线平行X轴,纵坐标相等横不同;
直线平行于Y轴,点的横坐标仍照旧。
对称点坐标
对称点坐标要记牢,
相反数位置莫混淆,
X轴对称y相反,
Y轴对称,x前面添负号;
原点对称最好记,
横纵坐标变符号。
自变量的取值范围
分式分母不为零,
偶次根下负不行;
零次幂底数不为零,
整式、奇次根全能行。
两点间距离公式
同轴两点求距离,大减小数就为之;与轴等距两个点,间距求法亦如此;
平面任意两个点,横纵标差先求值;差方相加开平方,距离公式要牢记。
CZSXRJB0702072坐标方法的简单应用
CZSXRJB0702081二元一次方程组
CZSXRJB0702082消元——解二元一次方程组
CZSXRJB0702083实际问题与二元一次方程组
CZSXRJB0702084三元一次方程组解法
CZSXRJB0702091不等式
不等式的解集
大(鱼)于(吃)取两边,
小(鱼)于(吃)取中间。
CZSXRJB0702092一元一次不等式
解一元一次不等式的步骤
去分母、去括号,
移项时候要变号,
同类项、合并好,
再把系数来除掉,
两边除(以)负数时,
不等号改向别忘了。
CZSXRJB0702093一元一次不等式组
一元一次不等式组解集
大大取较大,小小取较小,
小大,大小取中间,
大小,小大无处找。
CZSXRJB0702101统计调查
CZSXRJB0702102直方图
CZSXRJB0702103课题学习:从数据谈节水
CZSXRJB0801111与三角形有关的线段
CZSXRJB0801112与三角形有关的角
CZSXRJB0801113多边形及其内角和
CZSXRJB0801121全等三角形
CZSXRJB0801122三角形全等的判定
CZSXRJB0801123角的平分线的性质
CZSXRJB0801131轴对称
CZSXRJB0801132画轴对称图形
CZSXRJB0801133等腰三角形
CZSXRJB0801134课题学习 最短路径问题
CZSXRJB0801141整式的乘法
单项式运算
加、减、乘、除、乘(开)方,
三级运算分得清,
系数进行同级(运)算,
指数运算降级(进)行。
两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
=
;
CZSXRJB0801142乘法公式
平方差公式有两项,符号相反切记牢,
首加尾乘首减尾,莫与完全公式相混淆。
完全平方
完全平方有三项,首尾符号是同乡,
首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央。
CZSXRJB0801143因式分解
因式分解
一提(公因式)二套(公式)三分组,
细看几项不离谱,
两项只用平方差,
三项十字相乘法,
阵法熟练不马虎,
四项仔细看清楚,
若有三个平方数(项),
就用一三来分组,
否则二二去分组,
五项、六项更多项,
二三、三三试分组,
以上若都行不通,
拆项、添项看清楚。
CZSXRJB0801151分式
CZSXRJB0801152分式的运算
分式混合运算法则
分式四则运算,顺序乘除加减,
乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,
分子分母相约,然后再行运算;
加减分母需同,分母化积关键;
找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
CZSXRJB0801153分式方程
分式方程的解法步骤
同乘最简公分母,
化成整式写清楚,
求得解后须验根,
原(根)留、增(根)舍别含糊。
CZSXRJB0802161二次根式
最简根式的条件
最简根式三条件,
号内不把分母含,
幂指(数)根指(数)要互质,
幂指比根指小一点。
CZSXRJB0802162二次根式的乘除
CZSXRJB0802163二次根式的加减
CZSXRJB0802171勾股定理
CZSXRJB0802172勾股定理的逆定理
CZSXRJB0802181平行四边形
平行四边形的判定
要证平行四边形,两个条件才能行;一证对边都相等,或证对边都平行;
一组对边也可以,必须相等且平行;
对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。
CZSXRJB0802182特殊的平行四边形
矩形的判定
任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。
菱形的判定
任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形;
已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。
梯形的辅助线
移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。
三角形的辅助线
题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
CZSXRJB0802191变量与函数
CZSXRJB0802192一次函数
判断正比例函数:
判断正比例函数,检验当分两步走;一量表示另一量, 是与否;若有还要看取值,全体实数都要有。
正比例函数(
)图像与性质
正比函数很简单,经过原点一直线;K正一三负二四,变化趋势记心间;
K正左低右边高,同大同小向爬山;K负左高右边低,一大另小下山峦。
函数图像的移动规律
若把一次函数解析式写成y=k(x 0) b、二次函数的解析式写成y=a(x h)2 k的形式,则用下面的口诀:
左右平移在括号,上下平移在末稍,
左正右负须牢记,上正下负错不了
一次函数图像与性质口诀
一次函数是直线,图像经过仨象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与Y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
一次函数(
)图像与性质
一次函数是直线,图像经过仨象限;两个系数k与b,作用之大莫小看;
k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;
k是斜率定夹角,b与Y轴来相见;k的绝对值越大,线离横轴就越远。
CZSXRJB0802193课题学习 选择方案
CZSXRJB0802201数据的集中趋势
CZSXRJB0802202数据的波动程度
CZSXRJB0802203课题学习 体质健康测试中的数据分析
CZSXRJB0901211一元二次方程
CZSXRJB0901212降次 —— 一元二次方程的解法
解一元二次方程
方程没有一次项,直接开方最理想;如果缺少常数项,因式分解没商量;
b、c相等都为零,等根是零不要忘;b、c同时不为零,因式分解或配方;
也可直接套公式,因题而异择良方。
CZSXRJB0901213实际问题与一元二次方程
CZSXRJB0901221二次函数的图象和性质
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点, 它们确定图象现;
开口、大小由a断,c与Y轴来相见,
b的符号较特别,符号与a相关联;
顶点位置先找见,Y轴作为参考线,
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,
横标即为对称轴,纵标函数最值见。
若求对称轴位置, 符号反,
一般、顶点、交点式,不同表达能互换。
二次函数(
)图像与性质
二次方程零换y,二次函数便出现;全体实数定义域,图像叫做抛物线;
抛物线有对称轴,两边单调正相反;开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与Y轴来相见;b的符号较特别,符号与a相关联;
顶点非高即最低。上低下高很显眼,如果要画抛物线,平移也可去描点;
提取配方定顶点,两条途径再挑选,若要平移也不难,先画基础抛物线,
列表描点后连线,平移规律记心间,左加右减括号内,号外上加下要减。
CZSXRJB0901222用函数观点看一元二次方程
CZSXRJB0901223实际问题与二次函数
CZSXRJB0901231图形的旋转
CZSXRJB0901232中心对称
CZSXRJB0901233课题学习 图案设计
CZSXRJB0901241圆
圆的证明不算难, 常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联, 圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见, 圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
圆中比例线段
遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替;
遇等比,改等积,引用射影和圆幂;平行线,转比例,两端各自找联系。
圆的证明
圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边;它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联;圆周、圆心、弦切角,细找关系把线连;
同弧圆周角相等,证题用它最多见;圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间;外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端;直线与圆有共点,证垂直来半径连;
直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键;两圆相切作公切,两圆相交连公弦;
经过分点做切线,切线相交n个点;n个交点做顶点,外切正n边形便出现;
正n边形很美观,它有内接,外切圆;内接、外切都唯一,两圆还是同心圆;
它的图形轴对称,n条对称轴都过圆心点;如果n值为偶数,中心对称很方便;
正n边形做计算,边心距、半径是关键;内切、外接圆半径,边心距、半径分别换;
分成直角三角形2n个整,依此计算便简单.
CZSXRJB0901242点和圆、直线和圆的位置关系
CZSXRJB0901243正多边形和圆
圆内的正多边形
份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.
CZSXRJB0901244弧长和扇形面积
CZSXRJB0901251随机事件与概率
CZSXRJB0901252用列举法求概率
CZSXRJB0901253用频率估计概率
CZSXRJB0902261反比例函数
反比例函数图像与性质口诀
反比例函数有特点,
双曲线相背离的远;
k为正,图在一、三(象)限,
k为负,图在二、四(象)限;
图在一、三函数减,
两个分支分别减。
图在二、四正相反,
两个分支分别添;
线越长越近轴,
永远与轴不沾边。
反比例函数(
)图像与性质
反比函数双曲线,所有都不过原点;K正一三负二四,两轴是它渐近线;
K正左高右边低,一三象限滑下山;K负左低右边高,二四象限如爬山。
CZSXRJB0902262实际问题与反比例函数
CZSXRJB0902271图形的相似
CZSXRJB0902272相似三角形
CZSXRJB0902273位似
CZSXRJB0902281锐角三角函数
巧记三角函数定义
初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:
一位不高明的厨子教徒弟*鱼,说了这么一句话:正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;
余:余弦或余弦,邻:邻边即余是邻;
切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值(30度、45度、60度)记忆:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。
特殊三角函数值记忆
首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
CZSXRJB0902282解直角三角形及其应用
CZSXRJB09022891投影
CZSXRJB09022892三视图CZSXRJB09022893课题学习 制作立体模型
知识点综合
函数
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
几何图形中的辅助线
人说几何很困难,难点就在辅助线; 辅助线,如何添?把握定理和概念;
还要刻苦加钻研,找出规律凭经验; 图中有角平分线,可向两边作垂线;
也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;
角平分线加垂线,三线合一试试看; 线段垂直平分线,常向两端把线连;
要证线段倍与半,延长缩短可试验; 三角形中两中点,连接则成中位线;
三角形中有中线,延长中线等中线; 平行四边形出现,对称中心等分点;
梯形里面作高线,平移一腰试试看; 平行移动对角线,补成三角形常见;
证相似,比线段,添线平行成习惯; 等积式子比例换,寻找线段很关键;
直接证明有困难,等量代换少麻烦; 斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站; 圆上若有一切线,切点圆心半径连;
切线长度的计算,勾股定理最方便; 要想证明是切线,半径垂线仔细辨;
是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;
圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;
要想作个外接圆,各边作出中垂线;还要作个内接圆,内角平分线梦圆;
如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;
若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难;
辅助线,是虚线,画图注意勿改变;假如图形较分散,对称旋转去实验;
基本作图很关键,平时掌握要熟练;解题还要多心眼,经常总结方法显;
切勿盲目乱添线,方法灵活应多变;分析综合方法选,困难再多也会减;
虚心勤学加苦练,成绩上升成直线;几何证题难不难,关键常在辅助线;
知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;
线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;
全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;
四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;
两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;
特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;
圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;
切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;
切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;
以上规律属一般,灵活应用才方便。
,