,我们根据一次简单的二项分布实验,得到了一个关于 θ 的函数,这实际上是一个似然函数,根据不同的 θ 值绘制一条曲线,曲线就是θ的似然函数,y轴是这一现象出现的概率。
从图中可见,当 等于 0.7 时,该序列出现的概率是最大的,因此我们确定该硬币正面朝上的概率是0.7。
因此,回到正题,我们要求的是误差出现概率 的最大值,那就做很多次实验,对误差出现概率累乘,得出似然函数,带入不同的 ,看是多少时,出现的概率是最大的,即可确定的值。
综上,我们得出求 的似然函数为:
4.5 对数似然
由于上述的累乘的方法不太方便我们去求解 ,我们可以转换成对数似然,将以上公式放到对数中,然后就可以转换成一个加法运算。取对数以后会改变结果值,但不会改变结果的大小顺序。我们只关心等于什么的时候,似然函数有最大值,不用管最大值是多少,即,不是求极值而是求极值点。注:此处log的底数为e。
对数似然公式如下:
对以上公式化简得: