当前位置:首页 > 经验 >

机器学习建模标准流程(一份机器学习模型再训练终极指南)

来源:原点资讯(www.yd166.com)时间:2022-10-30 05:19:23作者:YD166手机阅读>>

2.1 明确业务问题

明确业务问题是机器学习的先决条件,这里需要抽象出现实业务问题的解决方案:需要学习什么样的数据作为输入,目标是得到什么样的模型做决策作为输出。

(如一个简单的新闻分类场景就是学习已有的新闻及其类别标签数据,得到一个分类模型,通过模型对每天新的新闻做类别预测,以归类到每个新闻频道。)

机器学习建模标准流程,一份机器学习模型再训练终极指南(5)

2.2 数据选择:收集及输入数据

数据决定了机器学习结果的上限,而算法只是尽可能逼近这个上限。意味着数据的质量决定了模型的最终效果,在实际的工业应用中,算法通常占了很小的一部分,大部分工程师的工作都是在找数据、提炼数据、分析数据。数据选择需要关注的是:

① 数据的代表性:无代表性的数据可能会导致模型的过拟合,对训练数据之外的新数据无识别能力;

② 数据时间范围:监督学习的特征变量X及标签Y如与时间先后有关,则需要明确数据时间窗口,否则可能会导致数据泄漏,即存在和利用因果颠倒的特征变量的现象。(如预测明天会不会下雨,但是训练数据引入明天温湿度情况);

③ 数据业务范围:明确与任务相关的数据表范围,避免缺失代表性数据或引入大量无关数据作为噪音;

2.3 特征工程:数据预处理及特征提取

特征工程就是将原始数据加工转化为模型有用的特征,技术手段一般可分为:

数据预处理:特征表示,缺失值/异常值处理,数据离散化,数据标准化等;特征提取:特征衍生,特征选择,特征降维等;

  • 特征表示数据需要转换为计算机能够处理的数值形式。如果数据是图片数据需要转换为RGB三维矩阵的表示。

机器学习建模标准流程,一份机器学习模型再训练终极指南(6)

字符类的数据可以用多维数组表示,有Onehot独热编码表示、word2vetor分布式表示及bert动态编码等;

机器学习建模标准流程,一份机器学习模型再训练终极指南(7)

  • 异常值处理收集的数据由于人为或者自然因素可能引入了异常值(噪音),这会对模型学习进行干扰。通常需要对人为引起的异常值进行处理,通过业务判断和技术手段(python、正则式匹配、pandas数据处理及matplotlib可视化等数据分析处理技术)筛选异常的信息,并结合业务情况删除或者替换数值。
  • 缺失值处理数据缺失的部分,通过结合业务进行填充数值、不做处理或者删除。根据缺失率情况及处理方式分为以下情况:① 缺失率较高,并结合业务可以直接删除该特征变量。经验上可以新增一个bool类型的变量特征记录该字段的缺失情况,缺失记为1,非缺失记为0;② 缺失率较低,结合业务可使用一些缺失值填充手段,如pandas的fillna方法、训练随机森林模型预测缺失值填充;③ 不做处理:部分模型如随机森林、xgboost、lightgbm能够处理数据缺失的情况,不需要对缺失数据做任何的处理。
  • 数据离散化数据离散化能减小算法的时间和空间开销(不同算法情况不一),并可以使特征更有业务解释性。离散化是将连续的数据进行分段,使其变为一段段离散化的区间,分段的原则有等距离、等频率等方法。
  • 数据标准化数据各个特征变量的量纲差异很大,可以使用数据标准化消除不同分量量纲差异的影响,加速模型收敛的效率。常用的方法有:① min-max 标准化:将数值范围缩放到(0,1),但没有改变数据分布。max为样本最大值,min为样本最小值。② z-score 标准化:将数值范围缩放到0附近, 经过处理的数据符合标准正态分布。u是平均值,σ是标准差。
  • 特征衍生

基础特征对样本信息的表述有限,可通过特征衍生出新含义的特征进行补充。特征衍生是对现有基础特征的含义进行某种处理(组合/转换之类),常用方法如:

① 结合业务的理解做衍生,比如通过12个月工资可以加工出:平均月工资,薪资变化值,是否发工资 等等;

② 使用特征衍生工具:如feature tools等技术;

  • 特征选择

特征选择筛选出显著特征、摒弃非显著特征。特征选择方法一般分为三类:

机器学习建模标准流程,一份机器学习模型再训练终极指南(8)

栏目热文

机器学习自动建模(深度学习自动建模)

机器学习自动建模(深度学习自动建模)

编辑导语:作为一款机器学习平台,Amazon SageMaker Canvas是否真的为数据分析师、业务分析师等岗位提供...

2022-10-30 05:29:25查看全文 >>

怎样创建一个机器学习模型(一份机器学习模型再训练终极指南)

怎样创建一个机器学习模型(一份机器学习模型再训练终极指南)

人工智能 (AI) 和机器学习(ML)正在推动商业变革和创新,开创了技术驱动运营、流程和商业模式的新时代。随着机器学习开...

2022-10-30 05:57:54查看全文 >>

机器学习建模的基本流程(机器学习的建模步骤)

机器学习建模的基本流程(机器学习的建模步骤)

导读你是否会遇到这样的场景,当你训练了一个新模型,有时你不想费心编写 Flask Code(Python的web 框架)...

2022-10-30 05:16:14查看全文 >>

机器学习模型建模步骤(arima模型的建模步骤)

机器学习模型建模步骤(arima模型的建模步骤)

摘要本文介绍了作为数据科学家或机器学习工程师应该掌握的机器学习(ML)建模的三个主要单元。机器学习建模,通过数据学习的艺...

2022-10-30 06:00:23查看全文 >>

机器学习建模平台技术架构图(机器学习的建模步骤)

机器学习建模平台技术架构图(机器学习的建模步骤)

AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源Auto...

2022-10-30 05:23:25查看全文 >>

机器学习建模的工具包(机器学习可视化建模)

机器学习建模的工具包(机器学习可视化建模)

机器之心报道机器之心编辑部如何应用自动机器学习 (AutoML) 加速图机器学习任务的处理?清华大学发布全球首个开源自动...

2022-10-30 05:27:59查看全文 >>

机器学习模型训练步骤(机器学习训练步骤)

机器学习模型训练步骤(机器学习训练步骤)

本文是为机器学习初学者准备的,目的是了解制作一个真正好的机器学习模型所涉及的不同步骤,以及应该避免哪些错误。本文并不是任...

2022-10-30 05:25:41查看全文 >>

三种机器学习模型(最新机器学习模型)

三种机器学习模型(最新机器学习模型)

AI 科技大本营按:本文节选自微软亚洲研究院机器学习研究团队刘铁岩、陈薇、王太峰、高飞合著的《分布式机器学习:算...

2022-10-30 05:16:01查看全文 >>

机器学习建模方法(适合新手的建模软件)

机器学习建模方法(适合新手的建模软件)

在数据的世界中,机器学习已经成为不可或缺的工具。机器学习可以帮助发现隐藏在大量数据中的特定知识。很多时候,这些知识都不是...

2022-10-30 05:49:27查看全文 >>

机器学习建模基础知识(机器学习软件建模)

机器学习建模基础知识(机器学习软件建模)

来源 | 算法进阶责编 | 寇雪芹头图 | 下载于视觉中国前言:机器学习作为人工智能领域的核心组成,是计算机程序学习数据...

2022-10-30 05:32:38查看全文 >>

文档排行