当前位置:首页 > 经验 >

机器学习建模标准流程(一份机器学习模型再训练终极指南)

来源:原点资讯(www.yd166.com)时间:2022-10-30 05:19:23作者:YD166手机阅读>>

① 过滤法:按照特征的发散性或者相关性指标对各个特征进行评分后选择,如方差验证、相关系数、IV值、卡方检验及信息增益等方法。

② 包装法:每次选择部分特征迭代训练模型,根据模型预测效果评分选择特征的去留。

③ 嵌入法:使用某些模型进行训练,得到各个特征的权值系数,根据权值系数从大到小来选择特征,如XGBOOST特征重要性选择特征。

机器学习建模标准流程,一份机器学习模型再训练终极指南(9)

  • 特征降维

如果特征选择后的特征数目仍太多,这种情形下经常会有数据样本稀疏、距离计算困难的问题(称为 “维数灾难”),可以通过特征降维解决。常用的降维方法有:主成分分析法(PCA), 线性判别分析法(LDA)等。

机器学习建模标准流程,一份机器学习模型再训练终极指南(10)

2.4 模型训练

模型训练是选择模型学习数据分布的过程。这过程还需要依据训练结果调整算法的(超)参数,使得结果变得更加优良。

  • 2.4.1 数据集划分训练模型前,一般会把数据集分为训练集和测试集,并可再对训练集再细分为训练集和验证集,从而对模型的泛化能力进行评估。① 训练集(training set):用于运行学习算法。② 开发验证集(development set)用于调整参数,选择特征以及对算法其它优化。常用的验证方式有交叉验证Cross-validation,留一法等;③ 测试集(test set)用于评估算法的性能,但不会据此改变学习算法或参数。
  • 2.4.2 模型选择常见的机器学习算法如下:模型选择取决于数据情况和预测目标。可以训练多个模型,根据实际的效果选择表现较好的模型或者模型融合。

机器学习建模标准流程,一份机器学习模型再训练终极指南(11)

模型选择

  • 2.4.3 模型训练训练过程可以通过调参进行优化,调参的过程是一种基于数据集、模型和训练过程细节的实证过程。超参数优化需要基于对算法的原理的理解和经验,此外还有自动调参技术:网格搜索、随机搜索及贝叶斯优化等。

2.5 模型评估

模型评估的标准:模型学习的目的使学到的模型对新数据能有很好的预测能力(泛化能力)。现实中通常由训练误差及测试误差评估模型的训练数据学习程度及泛化能力。

  • 2.5.1 评估指标① 评估分类模型:常用的评估标准有查准率P、查全率R、两者调和平均F1-score 等,并由混淆矩阵的统计相应的个数计算出数值:混淆矩阵查准率是指分类器分类正确的正样本(TP)的个数占该分类器所有预测为正样本个数(TP FP)的比例;查全率是指分类器分类正确的正样本个数(TP)占所有的正样本个数(TP FN)的比例。F1-score是查准率P、查全率R的调和平均:② 评估回归模型:常用的评估指标有RMSE均方根误差 等。反馈的是预测数值与实际值的拟合情况。③ 评估聚类模型:可分为两类方式,一类将聚类结果与某个“参考模型”的结果进行比较,称为“外部指标”(external index):如兰德指数,FM指数 等;另一类是直接考察聚类结果而不利用任何参考模型,称为“内部指标”(internal index):如紧凑度、分离度 等。
  • 2.5.2 模型评估及优化根据训练集及测试集的指标表现,分析原因并对模型进行优化,常用的方法有:

2.6 模型决策

决策是机器学习最终目的,对模型预测信息加以分析解释,并应用于实际的工作领域。

需要注意的是工程上是结果导向,模型在线上运行的效果直接决定模型的成败,不仅仅包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性的综合考虑。

三、 参考文献

《机器学习》--周志华

《统计学习方法》--李航

Google machine-learning

,

栏目热文

机器学习自动建模(深度学习自动建模)

机器学习自动建模(深度学习自动建模)

编辑导语:作为一款机器学习平台,Amazon SageMaker Canvas是否真的为数据分析师、业务分析师等岗位提供...

2022-10-30 05:29:25查看全文 >>

怎样创建一个机器学习模型(一份机器学习模型再训练终极指南)

怎样创建一个机器学习模型(一份机器学习模型再训练终极指南)

人工智能 (AI) 和机器学习(ML)正在推动商业变革和创新,开创了技术驱动运营、流程和商业模式的新时代。随着机器学习开...

2022-10-30 05:57:54查看全文 >>

机器学习建模的基本流程(机器学习的建模步骤)

机器学习建模的基本流程(机器学习的建模步骤)

导读你是否会遇到这样的场景,当你训练了一个新模型,有时你不想费心编写 Flask Code(Python的web 框架)...

2022-10-30 05:16:14查看全文 >>

机器学习模型建模步骤(arima模型的建模步骤)

机器学习模型建模步骤(arima模型的建模步骤)

摘要本文介绍了作为数据科学家或机器学习工程师应该掌握的机器学习(ML)建模的三个主要单元。机器学习建模,通过数据学习的艺...

2022-10-30 06:00:23查看全文 >>

机器学习建模平台技术架构图(机器学习的建模步骤)

机器学习建模平台技术架构图(机器学习的建模步骤)

AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源Auto...

2022-10-30 05:23:25查看全文 >>

机器学习建模的工具包(机器学习可视化建模)

机器学习建模的工具包(机器学习可视化建模)

机器之心报道机器之心编辑部如何应用自动机器学习 (AutoML) 加速图机器学习任务的处理?清华大学发布全球首个开源自动...

2022-10-30 05:27:59查看全文 >>

机器学习模型训练步骤(机器学习训练步骤)

机器学习模型训练步骤(机器学习训练步骤)

本文是为机器学习初学者准备的,目的是了解制作一个真正好的机器学习模型所涉及的不同步骤,以及应该避免哪些错误。本文并不是任...

2022-10-30 05:25:41查看全文 >>

三种机器学习模型(最新机器学习模型)

三种机器学习模型(最新机器学习模型)

AI 科技大本营按:本文节选自微软亚洲研究院机器学习研究团队刘铁岩、陈薇、王太峰、高飞合著的《分布式机器学习:算...

2022-10-30 05:16:01查看全文 >>

机器学习建模方法(适合新手的建模软件)

机器学习建模方法(适合新手的建模软件)

在数据的世界中,机器学习已经成为不可或缺的工具。机器学习可以帮助发现隐藏在大量数据中的特定知识。很多时候,这些知识都不是...

2022-10-30 05:49:27查看全文 >>

机器学习建模基础知识(机器学习软件建模)

机器学习建模基础知识(机器学习软件建模)

来源 | 算法进阶责编 | 寇雪芹头图 | 下载于视觉中国前言:机器学习作为人工智能领域的核心组成,是计算机程序学习数据...

2022-10-30 05:32:38查看全文 >>

文档排行