当前位置:首页 > 经验 >

sin cos tan度数表格(sin cos tan度数公式大全)

来源:原点资讯(www.yd166.com)时间:2022-11-02 08:36:07作者:YD166手机阅读>>

另外,狄拉克的工作也推动了量子场论的诞生,打开了一扇让人无比神往的新世界大门。物理学家们沿着这条路驯服了电磁力、强力、弱力,建立起了粒子物理的标准模型,于是四海清平,天下大定,除了那该死的引力。这些精妙绝伦的故事我们后面再讲,如果把这些故事写成一本《量子英雄传》,嗯,一定不比金庸的武侠逊色~

好了,回归正题,看到这个经典波动方程到后面还能掀起那么大的浪来,是不是突然就对它肃然起敬了呢?我们这样一顿操作推导出了经典波动方程,有的朋友可能有点懵,没关系,我们再来捋一下。这个看着很复杂的,包含了二阶偏导数的方程其实就只是告诉我们:我们把这根绳子极小的一段看作一个质点,那么这个质点满足牛顿第二定律F=ma,仅此而已。

09复盘

我们整个推导过程不过就是去寻找F=ma中的这三个量。我们把绳子的张力在竖直方向做了分解,然后得到了它在竖直方向上的合力F(T·sin(θ Δθ)-T·sinθ);我们定义了单位长度的质量μ,然后就可以计算那小段绳子的质量m(μ·Δx);我们通过对波的函数f(x,t)的分析,发现如果对这种表示距离(位移)的函数对时间求一次偏导数就得到了速度,再求一次偏导数就得到了加速度,于是我们就得到了这段绳子的加速度a(∂²f/ ∂t²)。然后我们就把这些量按照牛顿第二定律F=ma拼了起来。

sin cos tan度数表格,sin cos tan度数公式大全(9)

在处理问题的过程中,我们做了很多近似:因为我们是取得很小的一段,那么我们就可以用Δx近似代替绳子的长度Δl;假设扰动很小,绳子偏离x轴很小,那么角度θ就很小,我们就近似用正切值tanθ代替正弦值sinθ。很多人乍一看,觉得这么严格的推导怎么能这么随意的近似呢?你这里近似那里近似,得到的最终结果还是准确的么?

要理解这个问题,就得正式去学习微积分了,我现在告诉你微积分的核心思想就是一种以直代曲的近似,你信么?微积分里就是用各种小段小段的直线去近似的代替曲线,但是得到的结果却是非常精确的。因为我们可以把这些线段取得非常非常的小,或者说是无穷小,那么这个误差也就慢慢变成无穷小了。所以我们在分析这根绳子的时候,也都强调了是取非常小的一段,给一个非常小的扰动,得到一个非常小的角度θ。

另外,tanθ就是一次导数,然后它们的差再除以一次Δx,就又出现了一次导数,所以方程的左边就出现了f(x,t)对位置x的两次偏导数。方程的右边就是函数f(x,t)对时间t求两次偏导数得到的加速度a(求一次导数得到速度,求两次就得到加速度)。

所以,虽然我们看到的是一个波动方程,其实它只是一个变装了的牛顿第二定律F=ma。理解这点,波动方程就没什么奇怪的了。我们再来仔细的审视一下这个方程:

这个波动方程的意义也很直观,它告诉我们f(x,t)这样一个随时间t和空间x变化的函数,如果这个二元函数对空间x求两次导数得到的∂²f/ ∂x²和对时间t求两次导数得到的∂²f/ ∂t²之间满足上面的那种关系,那么f(x,t)描述的就是一个波。

如果我们去解这个方程,我们得到的就是描述波的函数f(x,t)。而我们前面对波做数学分析的时候得到了这样一个结论:如果一个函数f(x,t)描述的波,那么就一定满足f(x,t)=f(x-vt,0)。所以,波动方程的解f(x,t)肯定也都满足前面这个关系,这一点感兴趣的朋友可以自己下去证明一下。

好了,经典的波动方程我们就先讲到这里。有了波动方程,你会发现我们通过几步简单的运算就能从麦克斯韦方程组中推导出电磁波的方程,然后还能确定电磁波的速度。

10真空中的麦克斯韦方程组

麦克斯韦方程组的微分形式是这样的:

sin cos tan度数表格,sin cos tan度数公式大全(10)

这组方程的来龙去脉长尾科技在上一篇文章《最美的公式:你也能懂的麦克斯韦方程组(微分篇)》里已经做了详细的介绍,这里不再多说。这组方程里,E表示电场强度,B表示磁感应强度,ρ表示电荷密度,J表示电流密度,ε0和μ0分别表示真空中的介电常数和磁导率(都是常数),▽是矢量微分算子,▽·和▽×分别表示散度和旋度:

接下来我们的任务,就是看如何从这组方程里推出电磁波的方程。

首先,如果真的能形成波,那么这个波肯定就要往外传,在远离了电荷、电流(也就是没有电荷、电流)的地方它还能自己传播。所以,我们先让电荷密度ρ和电流密度J都等于0,当ρ=0,J=0时,我们得到的就是真空中的麦克斯韦方程组:

有些人觉得你怎么能让电荷密度ρ等于0呢?这样第一个方程就成了电场的散度▽·E=0,那不就等于说电场强度E等于0,没有电场了么?没有电场还怎么来的电磁波?

很多人初学者都会有这样一种误解:好像觉得电场的散度▽·E等于0了,那么就没有电场了。其实,电场的散度等于0,只是告诉你通过包含这一点的无穷小曲面的电通量为0,电通量为0不代表电场E为0啊,因为我可以进出这个曲面的电通量(电场线的数量)相等。这样有多少正的电通量(进去的电场线数量)就有多少负的电通量(出来的电场线数量),进出正负抵消了,所以总的电通量还是0。于是,这点的散度▽·E就可以为0,而电场强度E却不为0。

所以这个大家一定要区分清楚:电场E的散度为0不代表电场E为0,它只是要求电通量为0而已,磁场也一样。

这样我们再来审视一下真空中(ρ=0,J=0)的麦克斯韦方程组:方程1和2告诉我们真空中电场和磁场的散度为0,方程3和4告诉我们电场和磁场的旋度等于磁场和电场的变化率。前两个方程都是独立的描述电和磁,后两个方程则是电和磁之间的相互关系。我们隐隐约约也能感觉到:如果要推导出电磁波的方程,你肯定得把上面几个式子综合起来,因为波是要往外传的,而你上面单独的方程都只是描述某一点的旋度或者散度。

有一个很简单的把它们都综合在一起的方法:对方程3和方程4两边同时再取一次旋度。

方程3的左边是电场的旋度▽×E,对它再取一次旋度就变成了▽×(▽×E);方程3的右边是磁场的变化率,对右边取一次旋度也可以得到磁场B的旋度▽×B,这样不就刚好跟方程4联系起来了么?对方程4两边取旋度看起来也一样,这看起来是个不错的兆头。

可能有些朋友会有一些疑问:你凭什么对方程3和4的两边取旋度,而不取散度呢?如果感兴趣你可以两边都取散度试试,你会发现电场E的旋度取散度▽·(▽×E)的结果恒等于0。

这一点你看方程3 的右边会更清楚,方程3的右边是磁场的变化率,你如果对方程左边取散度,那么右边也得取散度,而右边磁场的散度是恒为0的(▽·B=0就是方程2的内容)。这样就得不出什么有意义的结果,你算出0=0能得到什么呢?

所以,我们现在的问题变成了:如何求电场E的旋度的旋度(▽×(▽×E))?因为旋度毕竟和叉乘密切相关,所以我们还是先来看看叉乘的叉乘。

11叉乘的叉乘

在积分篇和微分篇里,我已经跟大家详细介绍了矢量的点乘和叉乘,而且我们还知道点乘的结果A·B是一个标量,而叉乘的结果A×B是一个矢量(方向可以用右手定则来判断,右手从A指向B,大拇指的方向就是A×B的方向)。

而点乘和叉乘都是矢量之间的运算,那么A·B的结果是一个标量,它就不能再和其它的矢量进行点乘或者叉乘了。但是,A×B的结果仍然是一个矢量啊,那么按照道理它还可以继续跟新的矢量进行点乘或者叉乘运算,这样我们的运算就可以有三个矢量参与,这种结果我们就称为三重积。

A·(B×C)的结果是一个标量,所以这叫标量三重积;A×(B×C)的结果还是一个矢量,它叫矢量三重积。

标量三重积A·(B×C)其实很简单,我在微分篇说过,两个矢量的叉乘的大小等于它们组成的平行四边形的面积,那么这个面积再和一个矢量点乘一把,你会发现这刚好就是三个矢量A、B、C组成的平行六面体的体积。

sin cos tan度数表格,sin cos tan度数公式大全(11)

这个大家对着上面的图稍微一想就会明白。而且,既然是体积,那么你随意更换它们的顺序肯定都不会影响最终的结果。我们真正要重点考虑的,还是矢量三重积。

矢量三重积A×(B×C),跟我们上面说电场E旋度的旋度▽×(▽×E)形式相近,密切相关。它没有上面标量三重积那样简单直观的几何意义,我们好像只能从数学上去推导,这个推导过程,哎,我还是直接写结果吧:

A×(B×C)=B(A·C)-C(A·B)。

结果是这么个东西,是不是很难看?嗯,确实有点丑。不过记这个公式有个简单的口诀:远交近攻。什么叫远交近攻呢?当年秦相范雎,啊不,A×(B×C)里的A距离B近一些,距离C远一些,所以A要联合C(A·C前面的符合是正号)攻打B(A·B前面的符号是负号),这样这个公式就好记了,感兴趣的可以自己去完成推导的过程。

12旋度的旋度

有了矢量三重积的公式,我们就来依样画葫芦,来套一套电场E的旋度的旋度▽×(▽×E)。我们对比一下这两个式子A×(B×C)和▽×(▽×E),好像只要把A和B都换成▽,把C换成E就行了。那么,矢量三重积的公式(A×(B×C)=B(A·C)-C(A·B))就变成了:

▽×(▽×E)=▽(▽·E)-E(▽·▽)。

嗯,▽(▽·E)表示电场E的散度的梯度,散度▽·E的结果是一个标量,标量的梯度是有意义的,但是后面那个E(▽·▽)是什么鬼?两个▽算子挤在一起,中间还是一个点乘的符号,看起来好像是在求▽的散度(▽·),可是▽是一个算子,又不是一个矢量函数,你怎么求它的散度?而且两个▽前面有一个电场E,怎么E还跑到▽算子的前面去了?

我们再看一下矢量三重积的公式的后面一项C(A·B)。这个式子的意思是矢量A和B先进行点乘,点乘的结果A·B是一个标量,然后这个标量再跟矢量C相乘。很显然的,如果是一个标量和一个矢量相乘,那么这个标量放在矢量的前面后面都无所谓(3C=C3),也就是说C(A·B)=(A·B)C。

那么,同样的,E(▽·▽)就可以换成(▽·▽)E,而它还可以写成▽²E,这样就牵扯出了另一个大名鼎鼎的东西:拉普拉斯算子▽²。

13拉普拉斯算子▽²

拉普拉斯算子▽²在物理学界可谓大名鼎鼎,它看起来好像是哈密顿算子▽的平方,其实它的定义是梯度的散度。

我们假设空间上一点(x,y,z)的温度由T(x,y,z)来表示,那么这个温度函数T(x,y,z)就是一个标量函数,我们可以对它取梯度▽T,因为梯度是一个矢量(梯度有方向,指向变化最快的那个方向),所以我们可以再对它取散度▽·。

我们利用我们在微分篇学的▽算子的展开式和矢量坐标乘法的规则,我们就可以把温度函数T(x,y,z)的梯度的散度(也就是▽²T)表示出来:

sin cos tan度数表格,sin cos tan度数公式大全(12)

栏目热文

正弦余弦定理公式(正弦为什么叫正弦)

正弦余弦定理公式(正弦为什么叫正弦)

正弦定理和余弦定理是我们在高中数学学习中遇到的一组非常重要的定理,它们揭示了三角形的边角关系,将两者搭配使用能解决很多(...

2022-11-02 09:06:47查看全文 >>

sin cos tan度数公式(一张图看懂三角函数)

sin cos tan度数公式(一张图看懂三角函数)

初中数学、物理、化学公式定律大全1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角...

2022-11-02 08:32:34查看全文 >>

sin cos tan一图看懂(三角函数值对照表)

sin cos tan一图看懂(三角函数值对照表)

栖霞市实验中学 费祯红小时候,从未想过有幸成为一名教师,但一旦站上讲台,便想要成为自己在学生时代渴望遇到的那种老师。如果...

2022-11-02 08:24:07查看全文 >>

平菇和什么食材烹饪好吃(平菇和什么炖最好吃)

平菇和什么食材烹饪好吃(平菇和什么炖最好吃)

导语:莲藕山药靠边站,它才是“秋补之王”,蛋白质是猪肉的4倍,防秋燥益脾胃,简单一炒鲜美至极!大家好,我是傻姐美食,转眼...

2022-11-02 08:52:28查看全文 >>

数学sin cos tan公式(三角函数sin公式表格)

数学sin cos tan公式(三角函数sin公式表格)

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的...

2022-11-02 09:04:59查看全文 >>

正弦定理和余弦定理的所有公式表(初中正弦余弦口诀)

正弦定理和余弦定理的所有公式表(初中正弦余弦口诀)

1. 同角关系2. 诱导公式3. 和差公式4. 倍角公式5. 半角公式6. 万能公式7. 正弦定理:在一个三角形中,各边...

2022-11-02 08:59:13查看全文 >>

正切余切定理公式(正切余切关系公式)

正切余切定理公式(正切余切关系公式)

初中数学,让学生头痛的很大一部分就是三角函数!很多同学对与三角函数中正弦、余弦、正切、余切中的公式容易混淆,做题的时候不...

2022-11-02 08:41:34查看全文 >>

sin函数对照表(sin函数计算公式)

sin函数对照表(sin函数计算公式)

高中数学三角函数公式大全(重要知识点梳理)教学目标1、了解任意角三角函数的概念,弧度制与角度制互化。2、能推导三角函数诱...

2022-11-02 08:40:56查看全文 >>

一张图看懂三角函数(六种三角函数关系图解)

一张图看懂三角函数(六种三角函数关系图解)

进入高中后,同学们都要开始学习三角函数的知识了。三角函数总共分为六个:正弦(sin)、余弦(cos);正切(tan)、余...

2022-11-02 08:30:17查看全文 >>

文档排行